

Transport and Reactivity of Contaminated Estuarine Sediments: Results from a High Capacity Flume

Plymouth Team : Fay Couceiro, Andrew Turner, Geoff Millward

Cardiff Team : William Rauen, Binliang Lin, Roger Falconer

Environment Agency: Peter D Jones

Funded by the Engineering & Physical Sciences Research Council

Impact of Industrial Activity

Cu, Pb & Zn & geochronology in a 1 m core in the Mersey Estuary (Fox et al., 1999)

The Upper Mersey Estuary

Metal	Concentration, µg g ⁻¹	
Cu	35 ± 6	
Ni	58 ± 5	
Pb	540 ± 81	
Zn	330 ± 45	

Metal concentrations in <u>surface</u> sediments from the upper Mersey (Martino et al., 2002)

Modelling Metal Distributions in the Mersey Estuary (Wu et al., 2005)

- To conduct flume experiments using chemical tracers to track the mobility of estuarine sediments and the partitioning of Ni;
- To monitor the hydrodynamics and geochemistry concurrently during flume experiments;
- To integrate sediment-dynamics with geochemistry;
- To develop *generic* models for predicting metal transport and behaviour in estuaries.

High Capacity Flume and Model Funnel-Shaped Estuary

Characteristics of Flume Sediments

Parameter	Sediment Type	
	Mersey Estuary Fine Sand	Commercial Fine Sand
Grain Size	d ₅₀ = 130 μm	d ₅₀ = 130 μm
Surface Area, m ² g ⁻¹	1.3	0.08
Total Carbon, %	0.35	<0.05
Total Fe, %	0.8	0.03

Labelling Sediment using Bucket Chemistry !

Wet sieve 10 kg sediment with $d_{50} = 130 \ \mu m$

Incubate with Rh and Pt to give 400 μ g/g; Ni 200 μ g/g

(Couceiro et al., 2007)

Water Sampling Along the Axis of the Flume

Near bed intake

Plug of Labelled Sediment

Plug labelled with tracer Pt & Rh. Exchangeable Ni

Video of Flume Experiment

Bed Morphology After 8 Hours

Evolution of Bed Morphology & Bathymetric Feedback

Near Bed Concentrations of SPM

where w=RMS vertical velocity from ADV

Rhodium Tracer in SPM Near Bed

Partitioning of Ni with SPM

Tracers in Sediment Cores

CONCLUSIONS

- The SPM concentrations and the amount of labelled sediment depend on the bed stress in a complex manner because of "bathymetric feedback";
- The K_Ds for exchangeable Ni were independent of the concentration of SPM and were of the order 10⁴ L kg⁻¹;
- The labelled sediments were mixed to various depths depending on distance from the source.
- Integration of hydrodynamics and geochemistry is ongoing.

Sediment Mixing

Using Fick's Law:-

$$M = -D * \left\{ \frac{dC}{dx} \right\}$$

D = Mixing Coefficient (cm² s⁻¹) M = Mixing Rate (μ g cm⁻² s⁻¹)

$$\left\{\frac{dC}{dx}\right\}$$
 = Concentration Gradient (µg cm⁻⁴)
D ~ 10⁻³ cm² s⁻¹

Typical Mixing Coefficients for Estuarine Sediments D~10⁻⁷ cm² s⁻¹